Semi-supervised protein classification using cluster kernels

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Protein Classification Using Cluster Kernels

MOTIVATION Building an accurate protein classification system depends critically upon choosing a good representation of the input sequences of amino acids. Recent work using string kernels for protein data has achieved state-of-the-art classification performance. However, such representations are based only on labeled data--examples with known 3D structures, organized into structural classes--w...

متن کامل

Cluster Kernels for Semi-Supervised Learning

We propose a framework to incorporate unlabeled data in kernel classifier, based on the idea that two points in the same cluster are more likely to have the same label. This is achieved by modifying the eigenspectrum of the kernel matrix. Experimental results assess the validity of this approach.

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Hierarchical and Reweighting Cluster Kernels for Semi-Supervised Learning

Abstract: Recently semi-supervised methods gained increasing attention and many novel semi-supervised learning algorithms have been proposed. These methods exploit the information contained in the usually large unlabeled data set in order to improve classification or generalization performance. Using data-dependent kernels for kernel machines one can build semi-supervised classifiers by buildin...

متن کامل

A semi-supervised cluster-and-label approach for utterance classification

In this paper, we propose a semi-supervised cluster-and-label algorithm for utterance classification. The approach assumes that the underlying class distribution is roughly captured through– fully unsupervised–clustering. Then, a minimum number of labeled examples is used to automatically label the extracted clusters so that the initial label set is ”augmented” to the whole clustered data. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2005

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/bti497